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Abstract
The development of neural relighting techniques has by far outpaced the rate of their corresponding training data (e.g., OLAT)
generation. For example, high-quality relighting from a single portrait image still requires supervision from comprehensive
datasets covering broad diversities in gender, race, complexion, and facial geometry. We present a hybrid parametric neural
relighting (PN-Relighting) framework for single portrait relighting, using a much smaller OLAT dataset or SMOLAT. At the
core of PN-Relighting, we employ parametric 3D faces coupled with appearance inference and implicit material modelling to
enrich SMOLAT for handling in-the-wild images. Specifically, we tailor an appearance inference module to generate detailed
geometry and albedo on top of the parametric face and develop a neural rendering module to first construct an implicit material
representation from SMOLAT and then conduct self-supervised training on in-the-wild image datasets. Comprehensive
experiments show that PN-Relighting produces comparable high-quality relighting to TotalRelighting (Pandey et al., 2021),
but with a smaller dataset. It further improves shape estimation and naturally supports free-viewpoint rendering and partial
skin material editing. PN-Relighting also serves as a data augmenter to produce rich OLAT datasets beyond the original
capture.

Keywords 3D Reconstruction · Relighting · Neural rendering

1 Introduction

There are significant demands on synthesizing high-quality
3D faces with photorealistic lighting, textures, geometry,
and motions. Applications are numerous, ranging from tra-
ditional photo retouching and enhancement (Wright, 2017;
Pallant, 2011; Radke, 2013) to the latest meta-human cre-
ations (Hu et al., 2017; Ichim et al., 2015) in virtual
and augmented reality. The two most popular streams of
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approaches are physical-based modelling and image/video
synthesis. The former aims to directly model the physical
properties of the materials (Smolyanskiy et al., 2014; Riviere
et al., 2020), lighting (Chabert et al., 2006;Kanamori&Endo,
2018), facialmovements (Shin et al., 2014; Feng et al., 2021),
etc., along with accurate geometry for conducting photore-
alistic rendering. These approaches often require exquisite
skills by artists to edit on diffuse and specular normal and
albedomaps, which are too expensive for a broader audience.
The latter, epitomized the USC LightStage (Debevec et al.,
2000), can be viewed as a special category of image-based
rendering: a performer’s face is first captured under varying
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lighting conditions to produce an OLAT (One-Light-At-a-
Time) dataset that can be subsequently used to synthesize
any new lighting conditions. Benefiting from comprehensive
OLAT datasets, recent learning, in particular, neural render-
ing, techniques have further enabled single image portrait
relighting (Kanamori & Endo, 2018; Nestmeyer et al., 2020;
Wang et al., 2020; Pandey et al., 2021), with a quality com-
parable to physical-based approaches.

Despite all these advances, several fundamental chal-
lenges remain. For physical-based approaches, tremendous
efforts have been focused on inferring 3D models and phys-
ical properties from real images, to reduce, if not fully
eliminate, editing requirements. Latest learning-based tech-
niques (Wang et al., 2020; Zhou et al., 2019; Nestmeyer et al.,
2020; Wang et al., 2020) can produce reasonable 3D geom-
etry but still fall short of high quality normal, reflectance,
and lighting maps. Consequently, one can still easily tell real
from synthesized results. An advantage there though is that
the estimated models are parametric and therefore they can
be adjusted in shape andmovement to support free-viewpoint
rendering. For neural image synthesis, the key challenge is
the lack of datasets: quality OLAT data are scarce in public
and the very few available ones are small in size. In con-
trast, to ensure quality rendering, the recent Total Relighting
(Pandey et al., 2021) exploits 78 elaborately chosen subjects
to cover diversities in gender, race, age, and skin complexion,
with a total of over 2million training images. Producing com-
parable quality results with a much small dataset is difficult
but highly desirable.

In this paper, we present a hybrid parametric-neural
relighting (PN-Relighting) technique for high-quality por-
trait relighting from a single image (Fig. 1). In a nutshell,
PN-Relighting combines the benefits of the physical and
image-based approaches via two core modules: appearance
inference and neural relighting. It starts with an estimated
parametric 3D model using well-known techniques such as
3DMM (Blanz & Vetter, 1999). The appearance inference
module then adopts a learning-based scheme to infer detailed
surface normals and albedo textures and to refine theparamet-
ric face. The neural relighting module constructs an implicit
neural representation to reflectance (material) and combines
it with the fine-scale parametric face for relighting. To elimi-
nate the requirement of using largeOLATdatasets,we use the
procedures above to form a pseudo-albedo dataset to enrich
the diversity of OLAT.We also adopt self-supervised training
on in-the-wild image datasets to improve robustness. In par-
ticular, the implicit skin material representation accounts for
variations in complexion, supporting more accurate relight-
ing and partial material editing. Figure 2 shows the pipeline
of our method.

The advantages of PN-Relighting over the state-of-the-
art are multi-fold. On relighting, it uses a much smaller
OLAT dataset (that we call SMOLAT), with only 30 subjects

Fig. 1 We present a hybrid parametric-neural relighting (PN-
Relighting) technique. Taking a single portrait image as input (a), we
generate the surface geometry and albedo (b) and a free-view 3D face
relightable under different illumination (c)

covering much fewer variations in appearance than Pandey
et al. (2021). By applying the self/semi-supervised training
technique to SMOLAT and our synthesized Pseudo-Albedo
dataset from FFHQ (Karras et al., 2019), PN-Relighting
produces realistic relighting comparable to using heavier
OLAT datasets. On geometry estimation, by using a deep
material model under a differentiable rendering pipeline,
PN-Relighting further improves normal and albedo estima-
tions in accuracy and robustness. On free-view rendering,
PN-Relight builds upon parametric shapes, which can sus-
tainably benefit the current technical trend of leveraging
parametric models to boost portrait relighting, especially
considering the limited access to high-quality lighting train-
ing data. Our approach adds another layer of sophistication
to emerging 3D-aware generative models (Sela et al., 2017;
Gecer et al., 2019; Lattas et al., 2021). Finally, PN-Relighting
enables OLAT data augmentations, by producing strate-
gically designed lighting patterns on in-the-wild portrait
images as if they were captured in a LightStage.

To summarize, our main contributions include:

– We propose a novel neural pipeline, PN-Relighting,
to produce high-quality relightable and render-ready
3D face models by only taking monocular RGB por-
trait images as inputs. It supports multi-scale 3D face
geometry estimation, high-quality portrait relighting, and
free-viewpoint rendering.
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Fig. 2 The overall architecture of our PN-Relightingmethod. Our network is trained only using small OLAT dataset (SMOLAT) and a few hundreds
of in-the-wild images (a sub-set from FFHQ) while achieving realistic relighting effect on 3D faces

– We employ a parametric-neural model to account for
shape estimation, neural relighting, and implicit deep
material modelling under a differentiable rendering
pipeline.More importantly, we use a SMOLATdataset of
a much smaller scale than the state-of-the-art OLAT and
conduct self-/semi-supervised learning to achieve com-
parable relighting quality on in-the-wild images.

– In addition to neural portrait relighting, PN-Relighting
further enables facial material editing to support com-
plexion adjustment. It can also be used for OLAT data
augmentation.

2 RelatedWork

Reconstructing 3D faces from single ormultiple image inputs
has been thoroughly studied over the past few decades. State-
of-the-art approaches aim to exploit various types of visual
inputs, ranging fromvideo frames (Garrido et al., 2016; Ichim
et al., 2015; Jeni et al., 2015; Shi et al., 2014), to multi-view
RGB (Cao et al., 2018; Beeler et al., 2010), and RGB-D data
(Thies et al., 2015; Li et al., 2013), and to photo collections
(Roth et al., 2016). In this work, we only review the most
relevant ones, i.e., 3D facial generation using a single RGB
image as input and subsequently conducting relighting.

2.1 3D Face Reconstruction

Approaches for reconstruction from a single portrait image
can be generally classified as parametric vs. non-parametric
methods. Parametric methods model 3D faces by transform-
ing the shape and texture of the facial features into a vector
space, e.g., 3DMM (Blanz & Vetter, 1999), and reconstruct
the 3D face geometry by fitting the learned model to the
input data (Genova et al., 2018; Shang et al., 2020; Guo
et al., 2020). Such morphable models can provide statisti-
cal information on physiologically sound head shapes and
expression alignment (Booth et al., 2018; Dai et al., 2020; Li
et al., 2017; Cao et al., 2018), and can be easily fitted into
statistical linear model only using RGB data for optimiza-
tion (Thies et al., 2016; Zollhöfer et al., 2018). A downside
though is that parametric methods estimate the face model
within a fixed linear shape space where optimization can
lead to a local minimum, resulting in overly-smooth recon-
structions. To overcome such limitations, (Jiang et al., 2018;
Li et al., 2018; Riviere et al., 2020) extend the shape vari-
ants by fitting the parametric face model to input data, and
leverage a shape from shading (SfS) method to reconstruct
facial details from single RGB images. Nevertheless, these
approaches have degraded performance under occlusions or
viewing angle changes.
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The problem is particularly severe when they are applied
to the ”in-the-wild” images (Yang et al., 2020) since most of
these approaches rely on detailed 3D scans as training guid-
ance. Feng et al. (2021) introduced a regression-basedDECA
(Detailed Expression Capture and Animation) approach to
learning an animatable displacement model from in-the-wild
images without 2D-to-3D supervision. This parametric face
model is built on FLAME (Li et al., 2017), and can sig-
nificantly restore wrinkles along with expression change.
Different from parametric techniques, non-parametric meth-
ods (Jackson et al., 2017; Dou et al., 2017; Feng et al., 2018;
Alp Guler et al., 2017; Wei et al., 2019; Zhu et al., 2020)
directly predict 3D faces using voxels ormeshes, andmanage
to recover fine shape details compared with the parametric
models. However, they still need strong supervision from
explicit 3D shapes, commonly acquired by synthesized facial
data with limited shape variances. We refer readers to Zoll-
höfer et al. (2018) for an overview of the state-of-the-art 3D
face reconstruction.

2.2 Portrait Relighting

Related to face reconstruction is the problem of portrait
relighting.Many existing approaches have followed the sem-
inal work of Debevec et al. (2000) that uses a LightStage
to capture one-light-at-a-time (OLAT) faces under vary-
ing lighting conditions and subsequently conducts realistic
relighting to faces under arbitrary high dynamic range (HDR)
lighting environment. The LightStage-based approaches
(Sagar, 2005; Chabert et al., 2006; Xu et al., 2019; Meka
et al., 2019) have demonstrated robust performance on pho-
torealistic illumination rendering (Sagar, 2005) on both static
(Xu et al., 2019;Bi et al., 2020) andmoving subjects (Meka et
al., 2019; Chabert et al., 2006). (Zhang et al., 2021) achieves
human body free-view relighting by 6D light transport func-
tion. However, it was specifically designed to relight the
performer who was pre-captured within the LightStage and
cannot readily extend to other subjects.

The advent of deep learninghas introducedmanyhardware-
free approaches for single imageportrait relighting.Kanamori
and Endo (2018) directly predicted the albedo, illumina-
tion, and an occlusion-encoded light transport map to inverse
rendering the human body. However, their method down-
grades quickly on specular reflectance (e.g., oily skins) or
under high-frequency illumination. Zhou et al. (2019) uses
synthetic data as supervision and employs a Spherical Har-
monics (SH) lighting model (Basri & Jacobs, 2003) for
face relighting. Their method, however, loses details due
to the low-frequency nature of SH rendering. Sun et al.
(2019) improved this method by estimating the illumination
of input portrait, achieving plausible performance in a low-
frequency lighting environment.However, it still suffers from
hard shadows and specular highlight problems on human

faces. Nestmeyer et al. (2020) explicitly models multiple
reflectance channels of facial albedo, geometry, and lighting
effects to partially account for the rendering of specularity
and shadows. The technique mainly focuses on directional
illumination. Wang et al. (2020) improved the method by
using synthetic renderings of 3D photogrammetry scans to
supervise relighting training while learning the diffuse and
specular components of reflectance at the same time. They
can handle non-Lambertian effects but fall short of reducing
artifacts caused by errors in pixel-aligned illuminations.

The seminal work of TotalRelighting Pandey et al.
(2021) produces unprecedented photorealism with the newly
replaced background. It uses light maps as pixel-aligned
lighting representation and demonstrates excellent perfor-
mance in handling high-frequency self-shadowing effects,
and specularities on faces, as well as a generalization to
real-world portraits. However, similar to many data-driven
approaches, it requires using heavyOLAT data. For example,
in TotalRelighting, a comprehensive dataset of 78 subjects of
different gender, race, skin complexion, etc, was used, accu-
mulating over two million images in total. By far only a very
small number of groups are capable of producing such com-
prehensive data. In this work, we also construct a mini Light-
Stage. In contrast to using a very large dataset, we demon-
strate how to use a small dataset to achieve equivalent relight-
ingquality, by employing ahybrid parametric-neuralmethod.
In addition, our approach supports free-viewpoint viewing
and partial material editing, largely missing in the prior art.

3 Overview

Given a single RGB portrait image I, and an arbitrary HDR
lighting environment E, we set out to reconstruct a neural
avatarM that allows for free-viewpoint rendering in arbitrary
lighting environment. As shown in Fig. 2, our method con-
sists of two consecutive modules: an Appearance Inference
module and a Neural Relighting module. The appearance
module inferences the intrinsic image components, i.e., sur-
face normal and albedo, from I. Given a lighting environment
E, we project the predicted normal and albedo to its corre-
sponding diffuse and specular reflection components of face
appearance using Lambertian and Phong reflectance lobes
(Phong, 1975). Next, the neural relightingmodule transforms
I to an implicit neural latent vector to encode the face mate-
rial, which is then used to obtain the final relighted avatarM
by taking previously estimated diffuse and specular compo-
nents as input.

With respect to datasets, we train our hybrid parametric-
neural model using two datasets:
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3.1 Small-OLAT Dataset

To get accurate 3D face models, we use the Dynamic OLAT
dataset Zhang et al. (2021) that provides ∼ 600k OLAT
images with 2, 810 HDR environment lighting maps for
supervision. We follow the ground truth generation pipeline
in Pandey et al. (2021) to acquire accurate surface normal,
albedo, and the paired portraits of different subjects lit in
various lighting environments with ground truth illumina-
tion from the OLAT dataset. However, due to the limited
face variance of this small OLAT dataset, the trained model
has degraded relighting performance on images with uncon-
strained lighting environments.

3.2 “In-the-wild” Dataset

To better generalize our method on images captured in
an arbitrary recording conditions, we synthesize a Pseudo-
albedo (PA) dataset from FFHQ dataset Karras et al. (2019)
to better infer the albedo information from under-controlled
lighting environments. Then, we randomly pick another non-
overlapping subset from FFHQ dataset to train the Neural
Relighting Module, so that it can map the estimated dif-
fuse and specular components to the original ”in-the-wild”
images. To generate PA dataset, we first train the appearance
inferencemodule onFFHQdatasets in a self-supervisedman-
ner (Sun et al., 2019) to generate pseudo-surface normal and
pseudo-albedo. However, due to the lack of ground truth as
a strong constraint, the predicted face geometry and albedo
are inaccurate in certain lighting environments. To address
this issue, we selected the top-2% data of best visual cor-
rectness and manually removed noticeable highlights on the
pseudo-albedo maps. The detailed data selection of PA and
”in-the-wild” training is described in Sect. 5.

The rest of the paper is organized as follows:We introduce
ourAppearance Inferencemodule in Sect. 4.1, and theNeural
Relighting module in Sect. 4.1.3. We present our parametric
3D face model enabling free-view rendering in Sect. 4.2.
Next, we show our training details and loss functions in Sect.
5.We extensively evaluate our approach on different datasets
and show outperforming results compared to state-of-the-art
in Sect. 6, followed by a short discussion of our limitations
in Sect. 7.

4 Relightable 3D Face Generation

4.1 Appearance Inference Module

For each portrait image, we first preprocess it with the
recent subject segmentation algorithm Ke et al. (2022) to
mask out the background. The appearance inference module,

thus, decomposes the foreground portrait image I to intrinsic
image components, i.e., the surface normal N̂ , and albedo Â.
Specifically, we use Normal Network, resembling the struc-
ture of U-Net Ronneberger et al. (2015), to regress I to N̂ .
Then, we feed the composited image with normal {I, N̂ } to
Albedo Network, and generate a diffuse albedo image Â.

4.1.1 Normal Network

�N . Our normal subnet takes a background-free portrait
image to infer the surface geometry N̂ , which encodes the
per-pixel normals. It uses the encoder-decoder structure to
generate intrinsic features. The encoder consists of stacked
convolutional layers with max-pooling layers. The decoder
is composed of transposed convolutional layers with skip
connections. We train this normal net with the normal loss
functions described in Sect. 5.2.

4.1.2 Albedo Network

� A. Our Albedo subnet predicts the diffuse albedo map Â
from input image I and the predicted surface normal N̂ .
We concatenate N̂ and I, and feed the composited vector
to another encoder-decoder network with the same architec-
tures as Normal net. The loss functions are described in Sect.
5.2.

4.1.3 Neural Relighting Module

Our Neural Relighting Module aims to relight an image that
matches an HDR lighting environment E. In particular, this
module has two subnets:�M generates a material latent vec-
tor from I; and � R outputs the relit portrait ÎE or 3D avatar
A from Phong priors {Pn|n = 1, 2...}, as shown in Figs. 3
and 4.

4.1.4 Phong Priors

For time efficiency, we apply a Phong shading based method
(Pandey et al., 2021) on E and produce a set of prefiltered
environment maps with four different specular exponents
{n = 1, 16, 32, 64}. Therefore, we can easily compute the
diffuse and specular reflectance images, or Phong Priors, by
indexing into these prefiltered light maps using the surface
normal N̂ . Please refer to Phong (1975) for details about
Phong Shading and the specular exponents’ formulation. We
also take the albedo image as a component of Phong Priors.
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Fig. 3 The training of material network �M . We use three loss functions LlatR , LlatD and LlatL to learn the neural implicit material latent (IML)
vector, so that IMLs of the same subject are consistent on different illuminations

Fig. 4 The architecture of our neural relighting network � R . We use
modulation (Mod) and demodulation (Demod) operators fromStyleGan
(Karras et al., 2020) to transform thematerial encoded latent to learnable
weights of each layer of the decoder

4.1.5 Material Network�M

Even though these Phong priors can represent the color and
lighting information of the portrait, very limitedwork aims to
infer material properties from the data. To model variations
of portrait materials, we propose �M to generate a material
encoded vector M̂ to embed the face material information
into the training of neural relighting network � R . We use a
common set of encoding layers to construct �M taking I as
input, as shown in Fig. 3. This implicit skin material repre-
sentation accounts for variations on complexion, supporting
more accurate relighting and partialmaterial editing. The loss
functions can be found in Sect. 5.2.

4.1.6 Neural Relighting Network�R

Our relighting subnet takes the Phong priors {Pn} as input,
and generate a relight image ÎE by incorporating the mate-
rial information from �M . Figure 4 shows the structure of
our relighting network. To learn details of local lighting fea-
tures, we use the revised style block Karras et al. (2019)
with demodulation operator Karras et al. (2020) to obtain
the weight of the convolution kernel from the implicit mate-
rial latent vector M̂ . We inject this block into each layer of
the decoder so that the material information can be better
exploited in relighting portrait data. The loss functions and
training details are described in Sect. 5.2.

4.2 Free-View Relightable Facial Avatar

In the inference stage, we aim to obtain a portrait avatar
that supports free-viewpoint and arbitrary lighting render-
ing. Specifically, we use FLAME (Li et al., 2017) to build a
statistical 3D head modelM from the surface normal N̂ and
albedo Â. First, we fit the parametric 3D face model from
FLAME onto the input image by using a ResNet-based algo-
rithm (Feng et al., 2021). Since the 3D face is a parametric
model,we can ensure that the generatedmesh is topologically
consistent. Next, based on the mapping function provided
by FLAME, we use grid sampling to infer the UV samples
according to the 2D image-space albedo and normal. To fix
the occlusions, we use the depth buffer to calculate the occlu-
sion map. We then apply an inpainting algorithm Suvorov et
al. (2022) on the occluded area, to get a complete UV-space
albedo and normal map. At this point, we can fast index the
albedo and normal given any viewpoints.

To enable relighting effect on the 3D face, we directly
extend our relighting pipeline on 2D images to 3D, as long
aswe can get accurate UV-albedo and normalmaps fromPN-
Relighting. Specifically, we use Phong Shading functions to
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Table 1 We trained our network on different datasets

Network �N � A � R �M

SMALL-OLAT � � � �
Pseudo Albedo � �
FFHQ Dataset �

This table shows which datasets are used for each network separately

generate Phone priors to infer the environment illumination.
Next, we use the material encoder to get the IML of the por-
trait. Finally, we use the relighting network with the encoded
IML to produce the final free-view relight avatar (Table 1).

5 Training and Loss Functions

Our hybrid parametric-neural face is first trained on SMO-
LAT that only captures the faces of a small number of
individuals. Brute-force training leads to degraded perfor-
mance on a subject in an unconstrained environment. To
generalize our algorithm on images captured in arbitrary
recording conditions, we synthesize a Pseudo-albedo (PA)
dataset using portrait images without the ground truth geom-
etry and illumination to further constrain the training of
AlbedoNetwork� A.Additionally,we leverage a subset from
FFHQ, called sub-FFHQ, to constrain the training of Neu-
ral Relighting Network � R to further boost our relighting
performance on the ”in-the-wild” images.

Table 5 showswhich datasetswe used to train our network.
The training details of these networks will be described in
the following sub-sections.

5.1 Pseudo-Albedo Generation

To further boost our relighting network using the in-the-
wild data in a self-supervised manner, we introduce a novel
scheme to generate pseudo albedo, normal and environment
illumination for a subset of the FFHQ dataset.

Note that it’s extremely ill-posed and difficult to obtain the
actual ground truth per intrinsic component. Thus, we adopt
the Phong model as a strong prior to mitigate the ambiguity
between intrinsic components.

Specifically, we adopt the Normal and Albedo Networks
trained on the OLAT dataset to obtain the initial normal and
albedo for each input image. For environment illumination,
we use the Spherical Harmonic (SH) Lighting coefficient and
formulate an optimization problem to obtain the SH coeffi-
cients ωsh for the input image I from FFHQ dataset:

ω∗
sh = argmin

ωsh
MSE( Ã · P(Ñ ,ωsh), I) (1)

Fig. 5 For Pseudo Albedo dataset, we manually remove the specular
highlights on our selected Pseudo Albedo maps

where P(·) is the Phong Spherical Harmonic (SH) shading
functionPhong (1975). To solve the aboveoptimization prob-
lem, we use the Adam optimizer and set the learning rate to
0.01.

Then, based on the optimized environment illumination
ω∗

sh , we construct our Pseudo-Albedo dataset. Specifically,
as shown in Fig. 5, for every portrait image in the FFHQ
dataset, we use normal and albedo network to generate a
coarse albedo Ã and normal map Ñ , and assign a score SI to
each image according to the normal and albedo information:

SI = MSE( Ã · P(Ñ ,ω∗
sh), I). (2)

We then ascending sort the images according to SI and
choose thefirst 2%data (∼300 images)with the lowest scores
to construct the new dataset. For these selected data, we gen-
erate the pseudo-albedo AI for each image as ground truth:

AI = I/P(Ñ ,ωsh) (3)

However, due to the low-frequency property of P , there’re
still a certain amount of specular highlights left on our con-
structed pseudo-albedo. Here, we simply manually remove
the highlights on pseudo-albedo by image editing tools.

Such disentanglement and our highlight-removing oper-
ation further guarantee the effectiveness of the subsequent
optimization of the SH Lighting coefficient. Note that such
manual annotation to those highlight regions is accurate
enough for our optimization.
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5.2 Loss Functions

5.2.1 Normal Loss

We use a per-pixel normal loss to compare our predicted
normal map N̂ with the ground truth one N :

LN = 1

K

∑

p∈I

(1 − cos(N̂p, Np)) (4)

where p is the pixel in I , K is the total number of pixels in
I , and cos(·) is the per-pixel cosine distance.

5.2.2 Albedo Loss

We use the MSE (mean square error) loss and SSIM (struc-
tural similarity index) loss to measure the difference between
our predicted albedo Â and the ground truth one A:

LA = MSE( Â, A) + SSIM( Â, A) (5)

Note that, the Albedo Network is trained by a mixed
dataset of OLAT and PA so that the small PA dataset can
compensate for the variants of people identity of OLAT data
while the OLAT dataset can improve the albedo prediction’s
accuracy on ”in-the-wild” images. For this reason, the net-
work is capable of decomposing the albedo from light color
by taking advantage of high variant light conditions from
OLAT data.

5.2.3 Material Loss

Since there lacks explicit ground truth material information
from the OLAT dataset, we design a material loss to enforce
the consistency among the predicted material latent vectors
M̂ of the same subject. The insight is that the facialmaterial of
the same individual should be independent of the appearance
features, as well as lighting environments:

LM = LlatR + LlatD + LlatL , (6)

whereLlatR is the loss term to ensure that the input portrait I
is consistent with the output of relighting network Î E when
the lighting condition E is the same:

LlatR = MSE( Î E , I). (7)

LlatD is to enforce M̂ to be a zero vector when there are
no specular components in E:

LlatD = MSE(M̂D, 0) + MSE( ÎD, ID), (8)

where M̂D is the material encoded vector taking the diffuse
image ID as input. ÎD is the relit results only with the diffuse
components.

LlatL is to make sure the material consistency of the same
subject under different lighting environments:

LlatL = MSE(M̂Ei , M̂E j ) (9)

where M̂Ei and M̂E j is the material encoded vector in differ-
ent lighting environment Ei and E j , respectively . Figure 3
shows the training process using LlatR , LlatD , and LlatL .

5.2.4 Neural Relighting Loss

For the relighting network, we use three loss terms for super-
vision:

LR = LC + Lvgg + max
� R

Ladv. (10)

LC compares the relit results Î E with the ground truth one
I E :

LC = MSE(ÎE , I E ) + SSIM(ÎE , I E ). (11)

Lvgg measures the MSE between features extracted from
the relit results Î E and the ground truth one I E using a pre-
trained VGG network on the ImageNet:

Lvgg = MSE(vgg( Î E ), vgg(I E )). (12)

Ladv is an adversarial loss to encourage the relighting
network � R generating photorealistic results:

Ladv = E[logD(I E )] + E[1 − logD( Î E )] (13)

where E[·] is the expectation function, and D is a discrimi-
nator from the original GAN (Goodfellow et al., 2020).

5.2.5 Total Loss

We train all subnets in an end-to-end manner, and the total
loss function for our relighting network is defined as the
combinations of the above-described losses:

LP N R = λ1LN + λ2LA + λ3LM + λ4LR, (14)

where λ1,...,4 are weighted factors and they are separately
tuned for each subnet.
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5.3 Relighting Network Training on In-the-wild
Dataset

For each image I in the sub-FFHQ training set, we first esti-
mate the normal NI and albedo AI using our pre-trained
normal network �N and albedo network � A, and generate
the spherical harmonic (SH) illumination for each image in
the same way as mentioned in Sect. 5.1 using Eq. 1.

Then, we utilize the lighting condition as prior and assume
that the relit result from the estimated Phong priors should
be equal to the input image. Due to the lack of ground-truth
lighting, we only apply the self-supervising loss LlatR (Eq.
7) in the training of material network �M . Note that we
formulate the whole process in a self-supervised manner and
do not require ground truth lighting when trained with sub-
FFHQ dataset.

6 Experimental Results

Weconduct comprehensive experiments usingPN-Relighting
for a number of tasks. First, we provide a detailed description
of the dataset we use and provide our training details. Next,
we evaluate our method qualitatively and quantitatively from
three aspects: portrait appearance, portrait relighting, and
novel view synthesis. We compare our method with com-
petitive state-of-the-art methods as well as perform ablation
studies to evaluate separate modules in PN-Relighting.

6.1 Training Details

We train PN-Relighting on a Linux cluster with two AMD
EPYC 7742 CPUs, 16 × 64 GB RAM, and NVidia A6000
GPUwith48Gmemory.Weset the parameters {λ1, λ2, λ3, λ4}
= {0.1, 0.1, 0.01, 1} and {0, 0.1, 0, 1} for our total loss func-
tions on SMOLAT and in-the-wild dataset respectively. Note
that there’s no ground truth to guide the training of Normal
and Material networks on the in-the-wild dataset. We there-
fore fixed the parameters of these two subnets during the
training by setting the weights of corresponding loss terms
to zero. We use the Adam optimizer with a learning rate of
10−4. It takes around 24 hours (∼ 1 day) to train our network
on the SMOLAT, compared with TotalRelighting (Pandey et
al., 2021) , which takes 7 days.

Once the training on SMOLAT done, we then add the
Pseudo-Albedo and FFHQ dataset to the training of the
networks, with probability of occurrence 0.05 and 0.1 respec-
tively. This procedure takes around 24 hours (∼ 1 day) to
reach convergence. In total, we take about 48 hours to train
our network.

For data augmentation, we perform regular augmentation
strategies on the input, including color adjustment, image
shifting, and image re-scaling.

6.2 Datasets

We train PN-Relighting on two datasets: SMOLAT from
(Zhang et al., 2021), and Pseudo-AlbedoDataset fromFFHQ
(Karras et al., 2019).

6.2.1 SMOLAT

Zhang et al. (2021) captured this OLAT dataset for portrait
relighting using video as input. They used an ultra-high speed
camera to capture OLAT images of 36 subjects with 2810
HDR environment lighting maps.

For each frame of OLAT data, it contains 114 light posi-
tions, corresponding to114 images each.Thedataset contains
a total of 603,288 frames of OLAT data. We split the dataset
into a training set and a test set by the subject’s identity. The
trainingdata contains 30 individuals andweonly show results
on the rest 6 subjects (unseen in training) in this section. For
each frame of the OLAT data, we obtain its normal by photo-
metric stereo method (Woodham, 1980) and use it as ground
truth for training. Unlike TotalRelighting which uses a full-
light image as an albedo, we generate ground truth albedo by
photometric stereo to better filter out the specular effects, and
thus providing higher appearance fidelity for portrait relight-
ing. We use all the HDR environment illumination provided
by SMOLAT to generate the ground truth training pair of
Phong prior and image-based rendering under different illu-
mination for our Neural Relighting networks. Figure 6 shows
our relit results on SMOLAT.

6.2.2 Pseudo-Albedo Dataset

We have described the construction of Pseudo-Albedo
dataset in Sect. 5. It contains 300 images in total, and each
has a pseudo albedo map from Eq. 3 as training guidance.
We use 250 images as training set and evaluate our meth-
ods on the rest 50 images. In Sect. 6.4 we show that this
dataset improves the performance of our albedo-network on
the in-the-wild data.

6.2.3 Sub-FFHQ Dataset

In addition to the PA dataset, we collect a sub-FFHQ to train
theNeuralRelightingNetwork so that ourmethod canbegen-
eralized to ”in-the-wild” images. Specifically, we collected
about 50k images for training, and randomly picked about 1k
images for testing. None of images from sub-FFHQ overlap
with the PA dataset. Our ablation study in Sect. 6.4 shows
that adding the sub-FFHQ dataset into the training proce-
dure can help to preserve the faithful appearance realism and
image sharpness.

123



International Journal of Computer Vision

Fig. 6 Our results from a single input image and an arbitrary HDR image. We demonstrate the result in 5 different perspective of view
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Fig. 7 Qualitative comparison of appearance reconstruction results on
SMOLATdataset, with SfSNet (Sengupta et al., 2018) andDECA (Feng
et al., 2021). From left to right: Input: input image; GT: albedo and
normal by photometric-stereo method on OLAT data; the result of ours,
SfSNet, DECA

Table 2 Quantitative evaluation of albedo estimation on SMOLAT
dataset, comparingwith SfSNet(Sengupta et al., 2018) andDECA(Feng
et al., 2021)

Method SSIM ↑ PSNR ↑ RMSE ↓
SfSNet 0.899 14.499 0.190

DECA 0.860 8.395 0.390

Ours 0.981 32.493 0.024

We use SSIM, PSNR and RMSE to evaluate the result. ↑ / ↓ represents
the higher/lower the value the better
Bolded numbers represent the best results for the same group of exper-
iments

6.3 Evaluation

We have evaluated PN-Relighting on three tasks: portrait
appearance reconstruction, portrait relighting, and novel
view synthesis under various illuminations. For each task, we
compare with state-of-the-arts both qualitatively and quanti-
tatively.

6.3.1 Facial Appearance Reconstruction

We compare our estimated surface normal N̂ and albedo Â
with two state-of-the-art appearance estimation approaches:
DECA(Fenget al., 2021), andSfSNet (Sengupta et al., 2018).
DECA is a parametric face model that inferences N̂ and
albedo Â as their intermediate results. SfSNet is more close
to our method that also handles illumination change. Specif-
ically, we measure the reconstructed albedo accuracy using
PSNR, SSIM and RMSE metrics. As for normal, we use the

Fig. 8 Qualitative comparison of appearance reconstruction results on
in-the-wild dataset, with SfSNet (Sengupta et al., 2018) and DECA
(Feng et al., 2021). From left to right: Input: input image; Reconstruc-
tion: using the estimated albedo, normal, illumination and the rendering
pipeline to reconstruction the input image; Albedo: estimated albedo;
Normal: estimated normal

Table 3 Normal reconstruction error on SMOLAT dataset, compared
with SfSNet(Sengupta et al., 2018), and DECA(Feng et al., 2021).

Algorithm Mean < 5◦ < 15◦ < 25◦

SfSNet 11.583◦ 67.673% 74.872% 82.598%

DECA 8.726◦ 68.478% 79.071% 87.902%

Ours 5.400◦ 73.569% 90.227% 95.082%

The second column: mean angular error of per-pixel normal; the third to
fifth columns: the percentage of correct pixels within different angular
error thresholds
Bolded numbers represent the best results for the same group of exper-
iments

mean error and the percentage of correct pixels at various
thresholds.

On SMOLAT dataset, we conduct quantitative compar-
isons on the estimated normal and albedo in Tables 2 and 3.
For a fair comparison, we applied the background removal
and color calibration to all the other methods and only evalu-
ate the reconstructed appearance from the original viewpoint
of I . Figure 7 shows the visual comparison with state-of-the-
arts. Compared with other methods, normal map produced
by PN-Relighting contains more details and is the closest to
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Fig. 9 Qualitative comparison of portrait relighting results on in-the-
wild dataset. From left to right: Input: input image; the result of SfSNet
(Sengupta et al., 2018), MTP (Shu et al., 2017) , NVPR (Zhang et al.,

2021), SIPR1 (Wang et al., 2020), SIPR2 (Sun et al., 2019), TR (Pandey
et al., 2021); Ours (Adjusted): Our result (adjusted exposure curve to
TR), and Ours : our result

Table 4 Quantitative evaluation of reconstruction on FFHQ dataset,
comparing with SfSNet(Sengupta et al., 2018) and DECA(Feng et al.,
2021).

Method SSIM↑ PSNR↑ RMSE ↓
SfSNet 0.907 24.964 0.067

DECA 0.820 20.413 0.107

Ours 0.958 27.143 0.536

We use SSIM, PSNR and RMSE to evaluate the result. ↑ / ↓ represents
the higher/lower the value the better
Bolded numbers represent the best results for the same group of exper-
iments

ground truth. Similarly, our albedo is of a higher resolution
and presents fewer artifacts. Figure 11 shows the average
normal and albedo error along lighting changes. We can tell
that, our predicted intrinsic appearance parameters are stable
among different illumination, which is inline with facts: sur-
face normal and albedo are independent on lighting changes.

On the in-the-wild dataset, since there is no ground truth
albedo and normal for quantitative measurement. We hence
only show the qualitative comparisons of Â and N̂ in Fig. 8.

Overall PN-Relighting produces more convincing results
on the in-the-wild data. Specifically, compared to SfSNet,
our method reconstructs an albedo map with fewer specular
and artifacts whereas our normal is sharper, preserving more
high-frequency details. By introducing Phong diffuse and
specular shading as a prior, our method also more faithfully
recovers specular reflectance of the portrait in the recon-
structed Î . Table 4 shows a quantitatively comparison of the
reconstructed Î on the FFHQ test set (Fig. 9) .

On SMOLAT dataset, we show the qualitative and quanti-
tative comparison in Fig. 10, whose quantitative comparison
result is in Tables. 5, and 6 respectively. Our method has
achieved the best accuracy and stability under different met-
rics. When testing the average normal and albedo error along
lighting changes, as shown in Fig. 11, our method is more
robust in both geometry and albedo reconstructions, and con-
sequently achieves better relighting compared to SfSNet.
This result shows that our predicted normal and albedo keep
stable when the illumination changes, thus demonstrating
that our network has good decomposition ability for albedo
and illumination (Table 7).

6.3.2 Portrait Relighting

We have compared our relit results Î E with SfSNet, NVPR
(Zhang et al., 2021), MTP (Shu et al., 2017), TotalRelighting
(TR) (Pandey et al., 2021), SIPR1 (Wang et al., 2020) and
SIPR2 (Sun et al., 2019) usingSSIM,PSNR, andRMSEmea-
surements. As we don’t have access to the code and training
dataset of TR, we acquired the results of our testing dataset
from the authors.

As shown inFig. 10,NVPRpresents high stability in color.
However, it presents deteriorated performance in high con-
trast environment illumination such as specular highlights
due to the lacking of portrait geometry prior. To compare
with MTP, we choose a reference portrait image as its input.
Recall that the MTP relighting is primarily based on image
color, the results exhibit artifacts when the input portrait
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Fig. 10 Qualitative comparison of portrait relighting results on SMO-
LAT dataset. From left to right: Input: input image; GT: image-based
rendering ground truth by OLAT data; the result of SfSNet (Sengupta
et al., 2018), MTP(Shu et al., 2017) , NVPR(Zhang et al., 2021),

SIPR1(Wang et al., 2020), SIPR2(Sun et al., 2019), TR(Pandey et al.,
2021); Ours (Adjusted): Our result (adjusted exposure curve according
to TR) and Ours : our result

Table 5 Quantitative comparison of portrait relighting on the test data
in Fig.10, with SfSNet (Sengupta et al., 2018), MTP (Shu et al., 2017),
NVPR (Zhang et al., 2021), SIPR1 (Wang et al., 2020), SIPR2 (Sun et
al., 2019) and TR (Pandey et al., 2021)

Method SSIM↑ PSNR↑ RMSE↓
SfSNet 0.920 24.372 0.064

MTP 0.894 21.818 0.096

NVPR 0.964 29.779 0.034

SIPR1 0.923 23.059 0.073

SIPR2 0.935 24.391 0.069

TR 0.928 23.226 0.070

Ours 0.966 30.839 0.029

We use SSIM, PSNR and RMSE to evaluate the result. ↑ / ↓ represents
the higher/lower the value the better
Bolded numbers represent the best results for the same group of exper-
iments

differs from the reference one in color and texture. Simi-
lar to NVPR, SIPR1 and SIPR2 do not contain a geometric
prior, and therefore demonstrate noticeable artifacts of unnat-
ural highlights and shadows when presented in high-contrast
environment illumination. In contrast, by trainingwith a large
OLAT dataset, TR produces high-fidelity relighting results.
Ours has achieved comparable performance with TR while
using a much smaller training data size. Besides, due to the
special post-processing, the global hue of the relit results
from TR is significantly different from the other baseline
methods. Thus, for a more fair visual comparison, we man-
ually align the exposure curve of our results to TR, so that
the results have a similar hue, as presented in the column

Table 6 Quantitative comparison of portrait relighting on SMOLAT
dataset, with SfSNet (Sengupta et al., 2018), MTP (Shu et al., 2017)
and NVPR (Zhang et al., 2021)

Method SSIM↑ PSNR↑ RMSE↓
SfSNet 0.705 23.403 0.071

MTP 0.793 24.821 0.061

NVPR 0.854 27.256 0.046

Ours 0.875 28.203 0.041

We use SSIM, PSNR and RMSE to evaluate the result. ↑ / ↓ represents
the higher/lower the value the better
Bolded numbers represent the best results for the same group of exper-
iments

Ours(Adjusted) of Figs. 9 and 10. We can tell that, after the
adjustment, our results are of the similar, if not better, qual-
ity and preserve the same amount of details when compared
with TR.

On the in-the-wild dataset, we further conduct a quali-
tative comparison in Fig. 9. Compared to other methods,
PN-Relight produces more photo-realistic results. Moreover,
we demonstrate the effect of editing the implicit material
latent in Fig. 14 to change the material of the portrait. In this
example, we gradually reduce the implicit material latent
extracted from the original image to zero for relighting,
resulting in the portrait material gradually approaching to
diffuse during relighting.

6.3.3 Novel View Synthesis and Relighting

For multi-view rendering, we further compare with SfS-
Net, StyleFlow (Abdal et al., 2021), and StyleNerf (Gu et
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Fig. 11 We compare the estimated surface normal and albedo error with SfSNet in dynamic illuminations. A point light source (left) and a
low-contrast HDR environment map (right) are used to generate novel lighting

Fig. 12 Qualitative result of novel view synthesis and relighting results
on SMOLAT dataset. For an input image and a target illumination,
we demonstrate the three novel view results of the following method:
StyleNeRF (Gu et al., 2022), StyleFlow (Abdal et al., 2021), SfSNet
(Sengupta et al., 2018) and Ours

Table 7 Quantitative comparison on free-view relighting with SfS-
Net(Sengupta et al., 2018).

Method SSIM↑ PSNR↑ RMSE↓
SfSNet 0.914 22.402 0.076

Ours 0.921 23.622 0.068

We use SSIM, PSNR and RMSE to evaluate the result. ↑ / ↓ represents
the higher/lower the value the better
Bolded numbers represent the best results for the same group of exper-
iments

al., 2022). Both StyleNerf and StyleFlow construct 3D face
model based on GAN architecture, and exhibits inconsis-

Fig. 13 Qualitative result of novel view synthesis and relighting results
on in-the-wild dataset. For an input image and a target illumination,
we demonstrate the three novel view results of the following method:
StyleNeRF (Gu et al., 2022), StyleFlow (Abdal et al., 2021), SfSNet
(Sengupta et al., 2018) and Ours

tency when the viewpoint changes. Since the two methods
are not designed for relighting tasks, for fair comparison, we
apply NVPR to add lighting effects to their reconstructed 3D
faces. SfSNet can only generate surface normal and albedo
from portrait image, and is not for 3D face generation. We
therefore use the same way as described in Section. 4.2 to
form 3D faces using their predicted normal and albedomaps.
In Figs. 12 and 13, we show the qualitative results on SMO-
LAT and in-the-wild dataset, respectively. We observe that
the GAN-based modeling approaches still present poor con-
sistency on both shape and lighting under varying viewing
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Fig. 14 The application of editing material by implicit material latent

Fig. 15 Wedemonstrate the importance of Pseudo-Albedo dataset. Our
full network are more correct in color and of less specular highlights on
the estimated albedo

angles, due to their inaccurate geometry estimation. For SfS-
Net, their reconstructed appearance is affected by lighting
changes as we discussed above, and therefore fails to handle
specular highlights as shown in Fig. 12. Our method, in con-
trast, demonstrates the most consistent rendering effects on
both viewpoint and illumination changes.

It is important to note that there is no available multi-view
OLAT datasets that can enable quantitative measurement of
the identity and relighting consistency directly. For better
evaluation, we generate reference face images under differ-
ent viewing points and illuminations by using CG rendering
pipeline Zhang et al. (2022). Specifically, take one view with
a environment illuminations to construct the input image, and
take two new views with a new environment illumination as
the condition . As shown in Table 6, our results achieves the
best consistency w.r.t. identity and relighting (Fig. 14).

Table 8 Quantitative ablation study on the importance of in-the-wild
training of relighting module

Category Method PSNR↑ SSIM↑ RMSE↓
Albedo w/o PAD 27.494 0.832 0.044

w/o AP 31.706 0.926 0.029

w/ AP 34.333 0.970 0.020

Relighting w/o PAD 24.960 0.909 0.058

w/o AP 26.086 0.939 0.051

w/ AP 28.182 0.958 0.043

The result of our complete pipeline preserves richer detail. With in-the-
wild training, we achieve better albedo prediction and relighting results.
We use SSIM, PSNR and RMSE to evaluate the result. ↑ / ↓ represents
the higher/lower the value the better
Bolded numbers represent the best results for the same group of exper-
iments

6.4 Ablation Study

6.4.1 Pseudo-Albedo Dataset for Appearance Inference

To validate that our pseudo-albedo rendering pipeline can
effectively improve thegeneralization ability ofPN-Relighting
on SMOLAT, we create a variation of our network: (1) w/o
PAD that is trained only on SMOLAT; (2) w/o AP that
is trained on SMOLAT and Pseudo-Albedo dataset with-
out manually removing highlights on pseudo-albedo maps;
(3) w/ PAD denoting the full pipeline. The qualitative com-
parison results are shown in Fig. 15, and the quantitative
comparison results are shown in Table 8.We observe that our
Pseudo-albedo generation pipeline enables PN-Relighting to
preserve fine details in the relighting results, including the
makeup, skin texture, eyebrows, pupils, hair color, etc. w/o
PAD, in contrast, still exhibits a number of specular high-
lights in the predictions that should ideally be removed .

6.4.2 In-the-wild Training for Relighting

We have also verified the importance of training PN-
Relighting network on the in-the-wild dataset by creating two
variations: (1)w/o Wild represents the network using only
the OLAT dataset; (2) w/ Wild represents our full pipeline.
We show a qualitative comparison in Fig. 16. Compared to
thew/oWild, the network trained with FFHQ achieves supe-
rior performance in generalization, by faithfully reproducing
the original portrait’s in both appearance realism and image
sharpness.

6.4.3 Implicit Material Editing

Wecompare our relighting networkwith thematerial encoder
to the relighting network with the U-net structure. w/o IML
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Fig. 16 We demonstrate the importance of in-the-wild training of
relighting module. The result of our complete pipeline preserves richer
detail

Fig. 17 The ablation study of Implicit Material Latent. Using IML will
get more realistic highlights and shadows on the resulting image

Table 9 The ablation study on implicit material latent

Method SSIM↑ PSNR↑ RMSE↓
w/o IML 0.906 28.769 0.041

w/ IML 0.913 29.319 0.039

By adding IML to the relighting network, we improve the relighting
results
Bolded numbers represent the best results for the same group of exper-
iments

denotes the effect without the implicit material latent. w/
IML denotes our complete pipeline.

Regarding the ”w/o IML” variant, we adopt the same net-
work structure as “w/ IML” (the full pipeline), but remove
loss terms that related tomaterial latent vector M̂ in the train-
ing phase, i.e., the LlatD (Eq. 8) and LlatL (Eq. 9).

Qualitative comparisons are shown in Fig. 17 and quan-
titative comparisons are illustrated in Table 9. The network

Table 10 Ablation study on OLAT dataset size vs. in-the-wild training

Method OLAT PSNR↑ SSIM↑ RMSE↓
w/Wild 100% 34.333 0.970 0.020

50% 33.890 0.966 0.021

25% 32.669 0.959 0.025

12.5% 32.369 0.956 0.026

w/o Wild 100% 31.706 0.926 0.029

50% 31.661 0.936 0.028

25% 30.427 0.921 0.032

12.5% 30.397 0.923 0.032

We demonstrate the importance of in-the-wild training
Bolded numbers represent the best results for the same group of exper-
iments

with implicit material latent allows the network to produce
more realistic specular highlights, more consistent with the
real-life cases.

6.4.4 Training size of OLAT vs. In-the-wild Dataset

In order to verify the advantage of our in-the-wild training
strategy, we conduct an ablation study on different training
data partitions among OLAT and in-the-wild data. Specif-
ically, we use 25%-OLAT, 50%-OLAT and 100%-OLAT
to denote variants created by using 25%, 50% and 100%
OLAT data for training, and use w/o Wild and w/ Wild
to denote variants using in-the-wild training and not using
in-the-wild training respectively. The quantitative compari-
son is presented in Table 10. We can tell that the model of
25% OLAT + w/Wild outperforms the model using 100%
OLAT but doesn’t include the ”in-the-wild” training data.
This further demonstrates the effectiveness of employing PA
& FFHQ in the network training to boost the efficiency of
OLAT data usage.

6.4.5 Normal Network with Mesh-Prior

Even though the parametric model can provide normal infor-
mation, we found out that these parametric normals cannot
model the pixel-aligned geometry details in those facial
regions near the eyes and wrinkles. Such normal artifacts
further lead to inaccurate albedo modeling and the follow-
ing relighting module. Thus, we chose to rely on our OLAT
dataset to provide pixel-aligned facial normal estimation and
only adopt the parametric model to enable more stable free-
view relighting. To verify this, we create a variation w/
mesh-prior by using the mesh normal from the parametric
model as prior. In detail, for w/ mesh-prior, we first project
mesh-normal onto the input’s perspective of view, and attach
the transformed normal to the original input of Normal Net-
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Table 11 Quantitative ablation study on Normal Network

Algorithm Mean < 5◦ < 15◦ < 25◦

w/ DECA prior 5.685 ± 1.666 ◦ 72.159 ± 2.710 % 88.884 ± 3.768 % 94.892 ± 1.833 %

w/o DECA prior 5.400 ± 1.591 ◦ 73.569 ± 2.706 % 90.227 ± 3.693 % 95.082 ± 1.749 %

The first row demonstrates the normal error predicted by the Normal Network initiated with DECA mesh normal prior. The second row shows
the normal error of our Normal Network training on the OLAT dataset only. We can see that, since the normal provided by OLAT dataset is pixel
aligned, it produces the lower error
Bolded numbers represent the best results for the same group of experiments

work �N . The rest training procedure is the same as “w/o
mesh-prior” (our full pipeline). The quantitative compari-
son is shown in Table 11. We can tell that the “parametric
normal” will degrade the normal estimation accuracy. For
this reason, we don’t use the parametric normal as prior in
our optimization pipeline.

7 Discussions and FutureWork

Wehavepresented anovel hybrid parametric-neural approach
for producing high-quality portrait relighting. Our approach
PN-Relighting achieves comparable single image relight-
ing performance to the latest TotalRelighting (Pandey et al.,
2021). Different from prior art though, PN-Relighting uses
a much smaller OLAT dataset or SMOLAT. To address the
small data learning problem, we have employed parametric
3D faces and coupled them with appearance inference and
implicit material modeling. The key insight here is although
small, SMOLAT provides a viable implicit model to account
for material variations that in return compensate for limi-
tations in parametric models. Specifically, we have tailored
a differentiable rendering pipeline that combines the ben-
efits of parametric and neural approaches. Another major
benefit of our hybrid model is that it directly supports free-
viewpoint rendering, as the parametric model provides a 3D
model. Further, the implicit material model from SMOLAT
supports partial reflectance editing. Putting them all together,
PN-Relighting not only enables single portrait relighting but
potentially serves as a virtual LightStage, to supplement lim-
ited OLAT data with more varieties through rendering.

Amajor limitation inour current implementation is thatwe
have relied on OLAT image based rendering and Phong ren-
dering, neither can sufficiently render self-shadowing. The
lack of shadow handling leads to artifacts in the inference
stage. One possible direction is to first eliminate shadows
from the image and subsequently add themback once relight-
ing is conducted. In addition, our relighting module employs
pairwise training. Consequently, the network exhibits color
shifts in lighting that differ significantly from the environ-
ment illumination dataset. Emulating additional illumination

patterns can potentially mitigate the problem but would
require longer training time.

In addition, the regular acquisition of the OLAT dataset is
not able to separate highlights from diffuse, leading to poten-
tial errors in our calculated normal and albedo in areas of
strong specularity (e.g. hair, glasses, teeth). Adding polariz-
ers to cameras may be a viable solution to separate highlights
from diffuse in subsequent acquisitions.

Furthermore, our current UV-space normal and albedo
generation pipeline leverage a few structurally symmetri-
cal features, e.g., nose, and mouth, to inpaint the missing
part. Consequently, a large posed lateral face may fail the
inpainting algorithm, and introduce strong artifacts to the
novel-view results.

In addition, the parametric models are not 100% correct in
the construction of the facial details, especially in the cheeks
and the bridge of the nose areas. Since the face reconstruc-
tion algorithms are sensitive to features from these areas, it
can cause a change of identity in the rendering results when
viewing point changes are large.

Inherent to parametric models, the PN-Relighting cannot
model objects adhesive to the face, e.g., hair and glasses,
and produce artifacts on these objects. The missing of these
regions, as important features of the human face, may bring
about changes visually in identities, thus affecting the gen-
eralizability of the method. Recent works, such as EG3D
Chan et al. (2022), styleNeRF Gu et al. (2022), etc., have
demonstrated outperforming results in the field of 3D face
generation by leveraging the 3D-aware StyleGAN frame-
work. Compared to parametric models, these GAN-based
methods can handle challenging scenes including rendering
specular components, such as hair, teeth, glasses, and other
portrait details. However, StyleGAN is trained to tune the
input latent vectors, which are hard to extract explicit seman-
tic facial features to match the target image. For this reason,
to enable free-view portrait relighting on StyleGAN-based
frameworks, a prototype solution is to adopt PTI Roich et al.
(2022) to match the latent vector from StyleGAN to the tar-
get image. However, this vector-image matching procedure
is extremely time-consuming and is not feasible to apply in a
real-world application. In addition, the dedicated fine-tuning
procedure introduced by PTI is hard to ensure facial feature
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consistency among different viewpoints, as shown in Figs. 12
and 13. We can tell that the mouth shape of subjects is not
consistent along with viewpoint changes. In our future work,
we plan to adopt a GAN-based method to fill in the missing
parts and components that FLAME cannot well handle to
enable a better photo-realistic free-view relighting effect.

PN-Relighting partially addresses the issue by using a
small set of subjects and allows a user to synthesize more
comprehensive relighting datasets. PN-Relighting addresses
multi-view rendering by using a parametric 3D face model.
The latest trend in multi-view image synthesis is to combine
the Neural Radiance FieldMildenhall et al. (2020) and style-
GAN Karras et al. (2019), e.g., in Gu et al. (2022) and Chan
et al. (2022). We hence intend to investigate how to integrate
our material model in conjunction with these approaches,
to form an end-to-end free-view relighting pipeline without
employing explicit models.
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