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Figure 1. We show 3 illuminations in our capture settings. From
left to right are positive gradient light, negative gradient light, and
white light.

A. System Calibration and Capturing Settings

In this section, we provide more details about system cal-
ibration and capturing configurations. We first describe how
to perform photometric calibration in Sec. A.1. Then we ex-
plain gradient illuminations in Sec. A.2. Lastly, we analyze
the albedo acquisition in Sec. A.3.

A.1. Light Color Calibration

We conduct both geometric and photometric calibration
for our system. Below we briefly talk about how we perform
photometric calibration to reproduce user-specific lighting
conditions within our system. Specifically, the LED beads
in our system support six illumination colors (RGBWAC),
denoted as Li, i ∈ {1, 2, 3, 4, 5, 6}. Given an arbitrary 3-
channel illuminations Pj , j ∈ {1, 2, 3}, our goal is to simu-
late P with the linear combinations of L.

We assume the light is linear and fulfills the superposi-
tion principle. Thus, each channel in P can be represented

*Equal contribution.
†Corresponding author.

by the linear combination of L, where we calibrate coeffi-
cients a s.t. Pj = ai,jLi. Once the coefficients a are solved,
we can represent any 3-channel illumination with the LED
beads. Here, the LED beads adopt six illumination colors
to obtain a more comprehensive color spectrum and there-
fore have a better capacity to approximate the given lighting
conditions. Similar to [7], we utilize a precisely calibrated
color chart and solve a non-negative linear equation to cali-
brate a. For more details, please refer to [7].

A.2. Gradient Illuminations

Following [3, 4, 8], we use the popular gradient illumi-
nations to estimate the surface normal and corresponding
surface reflectance properties. Assuming L0 ∈ R3 is the
equalized maximum lighting intensity, the positive gradient
illuminations are defined as:

L = (
1

2
+

1

2
Θ)L0 , (1)

where Θ ∈ [−1, 1]
3 is the lighting direction and L ∈ R3 is

the corresponding RGB lighting intensity at Θ. We illumi-
nate the scene with 3 different lights: positive gradient il-
lumination, negative gradient illumination, and white light.
The negative gradient illumination is defined in a similar
way but with negative direction: L = ( 12 − 1

2Θ)L0, and the
white light is defined as L = L0, which means we turn all
lights on. See Fig. 1 for all 3 illuminations.

We then record the 3 pixel values captured under 3 illu-
minations as g+ ∈ R3, g− ∈ R3, and g0 ∈ R3, respectively.
For more efficient data acquisition, we adopt colored gradi-
ent illuminations, encoding the gradients into RGB chan-
nels, similar to the approaches by Ma et al. [8] and Guo et
al. [4].
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Figure 2. We qualitatively compare the estimated albedo between
the method of Guo et al. [4](denoted as TR), and our method on
a synthetic example. TR produces strong artifacts in occluded re-
gions, mainly due to the inaccurate mesh normal estimation. In-
stead, we approximate the albedo map from the image captured
under white light, which generates smoother and more accurate
results.

A.3. Albedo Acquisition

In photometric stereo (PS), albedo can be estimated si-
multaneously with normal [5, 8] from gradient illumina-
tions. However, in practice, we find the jointly recovered
albedo has severe artifacts, especially for the occluded re-
gions. Therefore, we choose to acquire albedo under white
light. Below we show the comparison between jointly esti-
mated albedo and our white-light albedo.

Jointly estimating albedo under gradient illuminations.
Similar to our settings, Guo et al. [4] propose a method to
estimate surface albedo a from two gradient illumination
measurements g+ and g−:

a =
g+ + g− − (r0, r0, r0)

(1− o)(1− r0)
, (2)

where r0 = 0.04 approximates the dielectric Fresnel term at
normal incidence, o ∈ [0, 1] is the ambient occlusion term.
Equation (2) assumes that the sum of two gradient illumi-
nations g++g− contains the albedo at each pixel. It further
adds r0 and o to account for the Fresnel effect and the am-
bient occlusion term. o is defined as:

d =
g+ − g−

g+ + g−
(3)

β =
3

2
(|d| − 1

3
) (4)

α = min(1, cos−1(n,nm)) (5)

o = βα (6)

Method PSNR↑ SSIM↑ RMSE↓
Ours 30.761 0.975 0.029
TR 29.840 0.951 0.032

Table 1. We quantitatively evaluate the estimated albedo between
the method of Guo et al. [4](denoted as TR), and our method on
a synthetic example. Our method has fewer artifacts in occluded
regions, resulting in better albedo estimation.

Here, n is the computed photometric surface normal (paper
Eq. (1)), and nm is the mesh normal, where the mesh is
reconstructed by MVS and depth cameras. Intuitively, Guo
et al. [4] assume that surfaces with a larger angle difference
between the photometric surface normal n and mesh normal
nm will have a larger ambient occlusion term. It works
well in their settings, potentially due to their depth cameras
enabling accurate mesh reconstruction.

Albedo acquisition with white light. However, we find
that directly applying the method of Guo et al. [4] to our
system results in poor albedo estimation, as shown in Fig. 2
and Tbl. 1, mainly due to the varying capture settings. The
method of Guo et al. depends on accurate geometry extrac-
tion to compute the correct occlusion term. While they em-
ploy depth cameras to fulfill the requirement, in our settings,
we adopt multi-view normal maps to train an SDF field to
extract the geometry. Due to the over-smoothed network
prediction, the calculated occlusion term is rather noisy, es-
pecially for the regions containing sharp edges. The inac-
curate occlusion term will also produce problematic albedo
estimation and hamper the final rendering results.

Instead, the image captured under white illumination is
naturally a better approximation in our settings. White light
helps produce minimum shadows on human bodies, largely
reducing the influence of self-occlusions. Moreover, normal
and albedo are entangled in gradient illuminations, while
images captured in white light can preserve most albedo in-
formation. We qualitatively and quantitatively compare the
two methods on a synthetic example, where we render a
synthetic 3D human model with 32 cameras and 3 illumi-
nations, the same as our capture settings. We demonstrate
in Fig. 2 and Tab. 1 that our method produces more accurate
albedo estimation.

The approximation of albedo using white-light images
presents bake-in shading and visibility issues due to inher-
ent limitations. To overcome this problem, we propose the
use of multi-view depth-guided G-buffer reprojection. This
approach enhances the robustness of our results by consid-
ering six views instead of relying on a single view which
might yield incorrect results. In Fig. 3, we compare the
re-rendered images and real capture under gradient illumi-
nations, demonstrating our method’s ability to accurately
render complex texture and geometry details.



Figure 3. We compare the re-rendered images and real capture
images under gradient illuminations. The complex texture and ge-
ometry details can be well rendered by approximating albedo with
white-light images.

Figure 4. Illustration on the coordinate systems for normal maps.
The left image demonstrates normal maps in a right-handed co-
ordinate system with the Z-axis oriented upwards, while the right
image displays a coordinate system with the Y-axis directed up-
wards.

Coordinate system of normal. The normal maps are cal-
culated within UltraStage’s world coordinate system, which
is consistent with the camera and lighting systems. This
right-handed coordinate system features the Z-axis oriented
upwards. We convert XYZ values to RGB values within the
range of 0-255. Typically, normal maps are represented in
camera space, where the Z-axis points towards the camera
and the Y-axis is directed upwards. However, to accommo-
date the multi-view capture setting, we opt to compute nor-
mal maps in world space. An illustration of normal maps
can be found in Fig. 4, showcasing configurations with the
Z-axis and Y-axis oriented upwards, respectively.

Figure 5. Qualitative comparison on geometry modeling between
our approach and normal integration. Traditional normal integra-
tion generates a smoother and noisier result than the SDF field.

B. Dataset Overview
As mentioned in the main paper, UltraStage consists of

over 2,000 static human poses. For each pose, we capture
it by 32 surrounding cameras under three lighting condi-
tions: color gradient illumination, inverse color gradient il-
lumination, and white light. The three lighting patterns are
switched at 5fps, so the subject is required to stay still for
around 0.6 second. For each pose, we provide 96 images at
resolution 6016×4016. We show more examples in Fig. 10,
Fig. 11, Fig. 12, and Fig. 13.

C. High-quality Neural Geometry Modeling
In order to augment the mesh surface details, we have

also explored the conventional normal integration tech-
nique. However, we qualitatively compared this method
with our approach in Fig. 5. Despite our efforts, no consid-
erable enhancement in the geometry detail was observed.
In fact, the normal integration produced a result character-
ized by both increased smoothness and noise in comparison
to the SDF field. Consequently, we have decided against
incorporating normal integration as a means to refine the
geometric detail.

D. Depth-guided G-buffer Reprojection
Instead of applying volume rendering to generate nor-

mal and albedo maps under novel views, we perform
depth-guided G-buffer reprojection to synthesize normal
and albedo maps from its nearby PS views. We have shown
in paper Fig. 6 and Tbl. 3 that it achieves more photoreal-
istic albedo and accurate normal maps. Below we explain



Figure 6. We qualitatively compare our per-scene neural asset re-
lighting approach with Total Relighting. Our method produces
more realistic specular effects, as evidenced by the silk dress re-
gions.

how to train the blending networks.
Specifically, we train our blending networks on the Twin-

dom dataset. We pick up 2040 3D models from the Twin-
dom dataset and render 90 training views for each 3D
model. Given a random novel view with known camera
pose and depth map (In training, we use GT depth map,
while in testing, it can be generated by volume rendering,
see paper Sec. 4.2), we pick up its 6 closest views, taking
them as sources views to synthesize the novel view image.

With the generated depth map in the novel view, for each
pixel we compute its world coordinate and re-project it on
the 6 selected views and collect 6 RGB colors. While oc-
clusions might happen in reprojection, we further compute
the depth difference between the novel view and the re-
projected views. We concatenate all the information, in-
cluding 6 RGB images and 6 depth difference maps, and
feed them into a UNET to learn 6 blending weights for each
pixel. We then apply weighted average to synthesize the
novel view image. While training on a synthetic dataset, we
find it generalizes well on the real captures. We refer to [13]
for more details.

E. Material Optimization
Following [12], we apply spherical Gaussians (SGs) to

approximate the rendering equation (paper Eq. (2)) to ac-
celerate the rendering process. An spherical Gaussian (SG)
G is formulated as:

G(ν; ξ, λ, µ) = µeλ(ν·ξ−1) , (7)

where ν is the query direction, ξ is the SG lobe axis, λ is
the lobe sharpness and µ is the lobe amplitude. We then
represent each term in the rendering equation with SGs. We
first approximate the incoming light with 128 SG lobes and
the cosine foreshortening term with one SG, similar to [2,
11, 12]. As for the BRDF, we adopt a simplified version of
Disney BRDF model [1],

fr(ωo, ωi;x) =
a

π
+

D(ωh)F (ωo, ωh)G(ωi, ωo)

4|ωi · n||ωo · n|
, (8)

where a is the diffuse albedo, ωh = (ωo + ωi)/∥ωo + ωi∥2
is the half-vector, D(ωh) is the normal distribution function
(NDF), F (ωo, ωh) is the Fresnel term and G(ωi, ωh) ac-
counts for shadowing effects. Suppose roughness R ∈ R+,
the NDF D(ωh) is defined as:

D(ωh) = G(ωh;n,
2

R4
,

1

πR4
) . (9)

The Fresnel term F (ωo, ωh) is computed as:

F (ωo, ωh) = F0 + (1− F0) · 2(−5.55473ωo+6.8316)(ωo·ωh) ,
(10)

where F0 is the specular reflectance. The shadowing terms
G(ωi, ωo) is computed as:

G(ωi, ωo) =
ωo · n

ωo · n(1− k) + k
· ωi · n
ωi · n(1− k) + k

,

(11)
where k = (R+1)2

8 .

Human-centric dataset material analysis. Materials
like aluminum and iron will have a larger F0 while dielec-
tric objects like ceramic will have a smaller specular re-
flectance. Since UltraStage is a human-centric dataset, the
captured images are mainly composed of human skin and
daily clothes. The most common materials in our dataset
are dielectric, such as cotton shirts, jeans, wool scarves, and
human skin. As a result, following [12], we also set F0 to
0.02, which is suitable for most dielectric materials. We
find it works well for our human-centric capture content.

Optimization choice. Zhang et al. [12] also models visi-
bility in direct illumination and indirect illumination. Dif-
ferently, we set the visibility term as 1 and ignore the in-
direct illuminations. As for the visibility term, our albedo
maps already contain occlusion information. We find mod-
eling visibility didn’t make too much difference, as shown
in Fig. 7. As for the indirect illuminations, the indirect light
networks require extra time to train. Due to the time limit,
we didn’t add this part. We do agree that human skin con-
tains complex indirect illumination effects like subsurface
scattering, and applying indirect light networks will poten-
tially improve the performance. Our neural pipeline only
serves as a starting point and we believe adding support for
advanced rendering effects will be a promising direction.

Per-scene neural asset relighting. We evaluated the ef-
fectiveness of UltraStage on two relighting scenarios: per-
scene neural asset relighting and learning-based single-
image relighting. For the former, we compare our ap-
proach with the state-of-the-art method Total Relighting [9]



Figure 7. We show whether to model visibility or not doesn’t make too much difference. The learned visibility maps are close to a constant.

in Fig. 6. Our method produces more realistic specular ef-
fects, as evidenced by the silk dress regions. Furthermore,
we anticipate that integrating advanced methods like Total
Relighting on our dataset will enhance the relighting effects
even further, which we leave for future works.

More free-view relighting results. In the main paper
Fig. 8 we have compared our novel view synthesis and re-
lighting effects with several baselines and demonstrated sig-
nificant improvements in rendering quality. The improve-
ments mainly come from the PS priors. Specifically, the
two baselines are trained with the MVS images(images cap-
tured under white illuminations). In contrast, we train our

model with the normal assisted geometry and depth-guided
G-buffers, which all rely on the images captured under gra-
dient illuminations. We provide more results in Fig. 15,
Fig. 14 and the supplementary video. We believe the render-
ing and effects can be further improved by applying more
powerful designs, which we leave for future works.

F. Single Image Relighting

We show two more testing examples in Fig. 9, where we
compare with RH [10] and RW [6] and demonstrate signif-
icantly improved relighting effects, thanks to our powerful
relighting dataset.

In Fig. 8 we show the user interface of the human study,



Figure 8. Human Study Interface in AMT. Given the input image
(small image in the bottom right), we relight it with our method
and a baseline method (either RW or RH) and ask the user to pick
up the more natural relit image.

where we invite 9 users to judge each example and use the
majority vote to decide the user preference. We compare
with RH & RW conduct on 30 examples (6 input images ×
5 new lighting conditions), resulting in a total of 540 clicks
(2 comparisons × 30 examples × 9 users). We randomize
which of the methods is shown on the left vs right to avoid
bias in order. The provided instructions are as follows:

An artificial intelligence agent is trying to imagine a
human’s appearance in a new lighting environment, where
the original human photo is overlaid in the bottom right. It
wants to make the human look natural and realistic under
new illuminations. It made two trials, presented under trial
1, and trial 2. Please zoom in to inspect the two images,
e.g. look at the facial and clothes details are realistic, and
that lighting effects on the human look visually pleasing,
and pick the more realistic trial image.

Among all the examples, more than 80% users choose
our method, as shown in the main paper Tbl. 4.

G. Failure Cases

G.1. Artifacts of Depth-guided Reprojection

We use normal maps to train a neural SDF field to repre-
sent the geometry. However, in the cases where the SDF
field is not accurate, the depth maps integrated from the
SDF field will have large errors. As a result, the reprojected
texture will have blurry artifacts.

G.2. Disalignments Between Different Illumina-
tions

The formula for normal estimation assumes that images
under different illuminations are pixel-aligned. The entire
capture process takes around 0.6 second. In some poses,
humans cannot keep still during the capture time. Such dis-
alignments between different frames will lead to inaccurate
normal maps.

G.3. Normal Estimation Error in Low-reflectance
Regions

An inherent limitation of PS methods lies in the accurate
estimation of surface normals in areas with dark or low-
reflectance regions, such as hair or black clothing, as well
as those exhibiting strong texture patterns. These challeng-
ing scenarios often yield weaker normal estimation results
due to the reduced signal-to-noise ratio and the difficulty
of disentangling the complex interactions between surface
geometry and reflectance properties. While increasing the
number of illumination patterns can potentially improve the
estimation accuracy in these regions, it comes at the expense
of greater complexity and additional capture efforts, which
may not always be feasible in practical applications.



Figure 9. We compare our method with RW [10] and RH [6]. Here we show two examples (two rows). For each input image (the first
column), we relight it under two new illuminations (Col.2-4 & Col.5-7). Our method predicts more photorealistic albedo and accurate
normal, achieving better relighting effects. Note that RH [10] and RW [6] adopt spherical harmonic lighting (shown with balls) while we
use spherical Gaussian environment maps (shown with rectangle images).
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Figure 10. More examples in UltraStage. For each pose, we show their white light image (albedo), color gradient illumination images, and
the extracted normal map.



Figure 11. More examples in UltraStage. For each pose, we show their white light image (albedo), color gradient illumination images, and
the extracted normal map.



Figure 12. More examples in UltraStage. For each pose, we show their white light image (albedo), color gradient illumination images, and
the extracted normal map.



Figure 13. More examples in UltraStage. For each pose, we show their white light image (albedo), color gradient illumination images, and
the extracted normal map.



HDRRelighting

Figure 14. We show relightable novel-view synthesis results under a fixed illumination. From left to right, the camera rotates around the
scene. The environment maps are represented by spherical Gaussians.



HDRRelighting

Figure 15. We show the relighting results under a fixed novel viewpoint with dynamic lighting. From left to right, the environment map
rotates around.
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